II B.Tech - I Semester-Regular/Supplementary Examinations November 2016

MECHANICS OF SOLIDS - I
 (MECHANICAL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \times 2=22 \mathrm{M}$
1.
a) What do you understand by "resilience"?
b) Differentiate the statically determinate structures and statically indeterminate structures.
c) Define the 'Beam' and the types.
d) What do you mean by shear stress in beams?
e) Write the formula for bending equation, and elaborate each term.
f) List out the importance of principle stresses.
g) Define shear force and bending moment.
h) List out any four assumptions made in simple bending theory.
i) What is the difference between factor of safety and margin of safety?
j) Write the difference between ductility and brittleness.
k) What are temperature stresses? How it will be develop in machine/structural elements?

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.

a) Draw the stress strain diagram for mild steel and discuss its salient points.
b) A tensile test was conducted on a mild steel bar. The following data was obtained from the test: 8 M
i) Diameter of the steel bar $=3 \mathrm{~cm}$
ii) Gauge length of the bar $=20 \mathrm{~cm}$
iii) Load at elastic limit $=250 \mathrm{kN}$
iv) Extension at a load of $150 \mathrm{kN}=0.21 \mathrm{~mm}$
v) Maximum load $=380 \mathrm{kN}$
vi) Total extension $=60 \mathrm{~mm}$
vii) Diameter of rod at failure $=2.25 \mathrm{~cm}$

Determine: 1) The Young's modulus
2) The stress at elastic limit
3) The percentage of elongation
4) The percentage decrease in area.
3. Draw Mohr's circle for direct stresses of $45 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $25 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive) and determine the magnitude and direction of resultant stress on planes making angles of $30^{\circ} \& 60^{\circ}$ with the plane of first principal stress. Also find the normal \& tangential stress on these planes. 16 M
4.
a) A steel bar of length 20 cm and $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ in section is connected at its end to an aluminum bar of 25 cm length and $8 \mathrm{~cm} \times 8 \mathrm{~cm}$ in section, such that they have a common
longitudinal axis. Find the load which will reduce the total length by 0.25 mm . Find also the total work done. Take $\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$ and $\mathrm{E}_{\mathrm{a}}=70 \mathrm{GPa}$

8 M
b) An aluminum bar 60 mm diameter when subjected to an axial tensile load 100 kN elongates 0.20 mm in a gauge length 300 mm and the diameter is decreased by 0.012 mm . Calculate the modulus of elasticity and the Poisson's ratio of the material.
5. Construct the S. F. D \& B. M. D for the beam with over hangs as shown in Figure.

16 M

6.
a) What do you understand by section modulus? Obtain the dimensions of the strongest rectangular section that can be cut from a circular \log of wood of 30 cm diameter.
b) Find the maximum shear stress induced by a load of 4 kN in the vertical section of a hollow beam of a square section if the outside width is 10 cm and the thickness of material is 2 cm .

